MgO conventional cell

The CRYSTAL program

The CRYSTAL program has been jointly developed by The Theoretical Chemistry Group at the University of Torino (Italy) and the Computational Materials Science Group at Daresbury Laboratory (U.K.).

The CRYSTAL package performs ab initio calculations of the ground state energy, electronic wave function and properties of periodic systems. 

Hartree-Fock or Kohn-Sham Hamiltonians (that adopt an Exchange-Correlation potential following the postulates of Density-Functional theory) can be used. 

Systems periodic in 0 (molecules, 0D), 1 (polymers, 1D), 2 (slabs, 2D), and 3 dimensions (crystals, 3D) are treated on an equal footing.

In each case the fundamental approximation made is the expansion of the single particle wave functions ('Crystalline Orbital', CO) as a linear combination of Bloch functions (BF) defined in terms of local functions (hereafter indicated as 'Atomic Orbitals', AOs).

The local functions are, in turn, linear combinations of Gaussian type functions (GTF), whose exponents and coefficients are defined by input. Functions of s, p, and d symmetry can be used. Also available are sp shells (s and p shells, sharing the same set of exponents). The use of sp shells can give rise to considerable savings in CPU time.

The program can automatically handle space symmetry: 230 space groups, 80 layer groups, 99 rod groups, 45 point groups are available. In the case of polymers it cannot treat helical structures (translation followed by a rotation around the periodic axis). However, when commensurate rotations are involved, a suitably large unit cell can be adopted.
Point symmetries compatible with translation symmetry are provided for molecules.

Input tools allow the generation of slabs (2D system) or clusters (0D system) from a 3D crystalline structure, the elastic distortion of the lattice, the creation of a super cell with a defect and a large variety of structure editing.

Previous releases of the software in 1988 (CRYSTAL88), 1992 (CRYSTAL92), 1996 (CRYSTAL95) and 1998 (CRYSTAL98) have been used in a wide variety of research with notable applications in studies of stability of minerals, oxide surface chemistry, and defects in ionic materials. See:

http://www.crystal.unito.it/compounds.html

 

Getting started with CRYSTAL

CRYSTAL performs two tasks: 

program task
crystal wave function calculation (geometry can be optimized)
properties wave function analysis and one electron properties calculation.

 

Wave function calculation

The input to CRYSTAL is strongly affected by the birthday date of the program (1978). A "continuity principle", "old input must work with the new program" was applied until CRYSTAL03. 

The input deck for wave function calculation, an ASCII text file,  is read by the program crystal.

The input to crystal   includes a title and four sections (referred to as "blocks"). 

Every block of the input deck consists of keywords (cases insensitive, written left justified) and numerical parameters (free format).

Every block ends with the keyword END (mandatory: 3 characters only are interpreted, any ending is allowed, ENDgeom, ENDbas, etc etc) or STOP. The latter will cause immediate termination of execution.

Optional keywords can be present in each section.
Extended information on input features are in "CRYSTAL03 User's Manual".

The input deck has the following structure (mandatory data)

  Title
input block 1 Geometry input (see tutorials: geometry editing and geometry optimization)
        standard geometry input
        optional geometry optimization and editing keywords
END
input block 2 Basis set input (see tutorial: basis set 
        standard basis set input
        optional basis set related keywords
END
input block 3 Single particle Hamiltonian (default: RHF) (see tutorial: Hamiltonian and computational parameters 
        optional general information keywords
END
input block 4 SCF control (see tutorial: SCF
        sampling in reciprocal space  (for 1D-2D-3D systems only)
        optional SCF related keyword
END

We consider MgO bulk as a case study. MgO is for CRYSTAL what is water for molecular codes.
MgO crystallizes in a cubic cell with a rock-salt structure. The crystal structure can be described as a fcc lattice of Mg ions with O ions occupying all the octahedral holes or vice versa. The rock-salt structure is the most common for MX compounds. MgO is an important oxidic system in minerals, in defective systems as well as in adsorption phenomena. Therefore, despite its simplicity, MgO has been the subject of many research studies.

Complete input for MgO wave function calculation follows, adopting the default values of all computational parameters. A minimal basis set, STO-3G, is adopted. Such a basis set is too poor to give a good wave function, but allows easy explanation of the input.

Section   CRYSTAL input   Description
 0) Title   MgO bulk   Title
1) Geometry Input 

 

  CRYSTAL
0 0 0
225
4.21
2
12 0.    0.    0.
8 0.5   0.5   0.5
  Dimensionality of the system
Crystallographic information (3D only)
Space Group number
Lattice parameter(s) (Angstrom)
Number of non equivalent atoms
Conventional atomic number and fractional coordinates of the atoms 
  Optional keywords    
  END   End of the geometry input section
2) Basis set Input

 

  12 3
1 0 3  2.  0.
1 1 3  8.  0.
1 1 3  2.  0.
8 2
1 0 3  2.  0.
1 1 3  6.  0.
99   0
  Mg:atomic number and number of shells
Basis set input: code, type, nr. of primitives, formal charge and scale factor of the gaussian exponents in the shell
Oxygen basis set: 2 shells
1:STO-nG; 0,s shell;3 primitives,2 elec;
standard Pople scale factor
99: end of basis set definition
  Optional keywords    
  END   End of the basis set input section
3) Hamiltonian and computational parameters   Optional keywords   Default choice: Restricted Hartree Fock
  END   End of Hamiltonian section
4) SCF Input 

 

  8 0 8   Reciprocal space integration parameters
  Optional keywords    
  END   End of the SCF input section

Few comments on the input data, fully explained in the related tutorials.

0.    Title
The title section consists of one line (max 80 characters) of descriptive information about the job.  It is not processed, but printed in the output.

1.    Geometry input 

CRYSTAL 

Translational symmetry of the system: 3D

0 0 0 

crystallographic information (setting of the origin, space group code)

225 

space group number

4.21 

minimal set of cell parameters (a,b,c,alpha, beta, gamma): fcc cubic, 1 parameter, a 

number of non-equivalent atoms

12 0. 0. 0.

conventional atomic number and fractional coordinates of Mg

8 0.5 0.5 0.5

conventional atomic number and fractional coordinates of O
END No geometry editing - the geometry to compute the wave function is defined

 

The translational symmetry of the system is defined by the keywords (written left justified):

CRYSTAL             3D
SLAB                     2D
POLYMER            1D
MOLECULE         0D  - no translational symmetry

Keyword EXTERNAL reads geometry from an external file. See CRYSTAL03 User's Manual.

The symmetry operators are automatically generated according to the space group. 

CRYSTAL refers to the primitive cell only (see geometry input).  The two atoms in the primitive cell of bulk MgO are in a special crystallographic position, of multiplicity 1. If the multiplicity of the position is greater than 1, all atoms symmetry related are generated.

Subsequent edit of the structure (optional) is obtained by inserting keywords before the string END.

Geometry input examples for a number of structure are available in Chapter 4 of CRYSTAL03 User's Manual and in the Geometry Input directory

2.    Basis set input 

The local functions of the crystalline basis set are of the same type of the ones used in molecular codes.
For each centre, usually an atom, the associated basis set of contracted gaussian functions is defined.
The basis set type "1" defines a STO-nG basis set 

12 3
1 0 3  2. 0.





1 1 3 8. 0.
1 1 3 2. 0.

8 2

1 0 3  2. 0.
1 1 3  6. 0.




99   0
  12   conventional atomic number (Mg)
3
     number of shells 3; s (1AO), sp (4AO), sp(4AO) type, => 9 AO for MgO atom.
      Definition of the 3 shells follows. First shell:
1     BS input code (STO-nG); 0     shell type (s)
3     number of primitives 
2.    formal shell charge
0.    scale factor - Pople value for STO-nG is used when the value is 0.
2nd shell - STO-3G, sp type (1), formal charge 8, standard scale factor
3rd shell - STO-3G, sp type (1), formal charge 2, standard scale factor

8     conventional atomic number (O))
2
     number of shells 3 (s, sp => 5AO)
1     BS input code (STO-nG)
0     shell type (s)
3     number of primitives 
2.    formal shell charge
0.    scale factor - Pople value for STO-nG when the value is 0.
2nd shell - STO-3G, sp type (1), formal charge 6, standard scale factor
99    formal atomic number - end of BS definition
END   End of the basis set input section

The "conventional atomic number" links the basis set to the atoms entered in geometry input (see Basis Set Input).
The electronic configuration of the atoms is used in the calculation of the atomic wave function only (when the guess for SCF is a superposition of atomic densities). 
The number of electrons attributed to an atom is the sum  of shell charges. In this example, 12 electrons are attributed to Mg, and 8 to O; an ionic configuration (0 electrons to the 3rd Mg shell, and 8 electrons to the second O shell) could lead to a better guess for a highly ionic system like MgO.

Basis set input examples are available in Chapter 4 of CRYSTAL03 User's Manual
Basis sets STO-3G for all atoms from Z=1 to Z=54  are given in  sto-3g_basis file. 

3.    Hamiltonian and computational parameters

END   End of Hamiltonian section

Default values are supplied for Hamiltonian (Restricted Hartree-Fock, RHF), truncation criteria of Coulomb and exchange sums, type of run (sequential, traditional SCF, integrals stored on disk).

A record with  END is required to close the third input block.

4.     SCF control parameters

8 0 8   8    shrinking factor - Pack Monkhorst net 
0    dummy variable - not used in CRYSTAL03
8    shrinking factor Gilat net
END   End of the SCF input section

The only mandatory choice (for periodic systems) is the definition of the sampling in reciprocal space (lattice vectors b1, b2, b3) to compute Fermi energy. The input datum is the number of segments the first reciprocal lattice vector (b1) is subdivided to generate a commensurate net of k points in the first Irreducible Brillouin Zone (IBZ). 
The Hamiltonian matrix computed in direct lattice, Fg, is Fourier transformed at  the given k points to obtain Fk.  Eigenvalues Ek and eigenvectors Ak are computed at each k point by solving the equation:

Hk  Ak = Sk Ak Ek

All quantities referring to the k points of the "Gilat net" are computed by interpolation of the values calculated exactly at the k points of the Pack-Monkhorst net, and used to find the value of the Fermi energy by integration. When the system is an insulator, no bands are partially occupied,  there are as many occupied bands as electrons. The Gilat shrinking factor can have the same value as Pack-Monkhorst.

Default values are chosen for convergence criteria, convergence tools as well as bands occupancy.

A test run to check the input and estimate the computational resources to be allocated is performed by inserting the following keywords:

 

keyword   

  insert in block   

 supply input blocks   

   test

TESTGEOM   

1   

  1   

 geometry 

TESTPDIM   

3   

  1-2-3-4   

 geometry, basis set, symmetry 

TESTRUN   

3   

 1-2-3-4   

 geometry, basis set, symmetry, disk space allocation 

 

A quick tour of CRYSTAL output

The following output is produced when running  crystal with MgO input deck presented above..

Header of CRYSTAL.
It reports the CRYSTAL version and the main authors of the code
 *******************************************************************************
 *                                                                             *
 *                                CRYSTAL03                                    *
 *                              Release : 1.0                                  *
 *                                                                             *
 *                              MAIN AUTHORS                                   *
 *                                                                             *
 *      V.R. SAUNDERS(1), R. DOVESI(2), C. ROETTI(2), R. ORLANDO (2,3),        *
 *      C.M. ZICOVICH-WILSON(2,4), N.M. HARRISON(1,5), K. DOLL(1,6),           *
 *      B. CIVALLERI(2), I. J. BUSH(1), Ph. D'ARCO(2,7), M. LLUNELL(2,8)       *
 *                                                                             *
 *                                                                             *
 * (1) COMPUTATIONAL SCIENCE & ENGINEERING DEPARTMENT - CLRC DARESBURY (UK)    *
 *     http://www.cse.dl.ac.uk/Activity/CRYSTAL                                *
 * (2) THEORETICAL CHEMISTRY GROUP - UNIVERSITA' DI TORINO - TORINO (ITALY)    *
 *      http://www.crystal.unito.it                                            *
 * (3) UNIVERSITA' DEL PIEMONTE ORIENTALE - ALESSANDRIA (ITALY)                *
 * (4) UNIVERSIDAD AUTONOMA DEL ESTADO DE MORELOS - 'CUERNAVACA (MEXICO)       *
 * (5) IMPERIAL COLLEGE - LONDON (UK)                                          *
 * (6) TU BRAUNSCHWEIG - BRAUNSCHWEIG (GERMANY)                                *
 * (7) UNIVERSITE' PIERRE ET MARIE CURIE - PARIS (FRANCE)                      *
 * (8) UNIVERSIDAD DE BARCELONA - BARCELONA (SPAIN)' *                         *
 *******************************************************************************
Date and solar time
 EEEEEEEEEE STARTING  DATE 02 09 2003 TIME 08:30:00.0
Title section from input  MgO bulk
3D system 

Summary of crystallographic information.


Lattice parameters of the conventional cell  

2 atoms in the asymmetric unit


Atomic number and coordinates (fraction of lattice vectors)
 CRYSTAL CALCULATION
 (INPUT ACCORDING TO THE INTERNATIONAL TABLES  FOR X-RAY CRYSTALLOGRAPHY)
 CRYSTAL FAMILY                        :   CUBIC       
 CRYSTAL CLASS  (GROTH - 1921)         :  CUBIC HEXAKISOCTAHEDRAL               
 
 SPACE GROUP (CENTROSYMMETRIC)         :  F M 3 M          
 
 LATTICE PARAMETERS  (ANGSTROMS AND DEGREES) -  CONVENTIONAL CELL
        A            B            C        ALPHA         BETA       GAMMA
     4.21000     4.21000      4.21000    90.00000    90.00000     90.00000
 
 
 NUMBER OF IRREDUCIBLE ATOMS IN THE CONVENTIONAL  CELL:    2
 
 INPUT COORDINATES
 
 ATOM AT. N.               COORDINATES
   1  12     0.000000000000E+00   0.000000000000E+00  0.000000000000E+00
   2   8     5.000000000000E-01   5.000000000000E-01  5.000000000000E-01
 
 *******************************************************************************
 
 << INFORMATION >>: FROM NOW ON, ALL  COORDINATES REFER TO THE PRIMITIVE CELL
 
 *******************************************************************************
Lattice parameters of the primitive cell 




Coordinates of atoms in the primitive cell.


Number of symmetry operators.
 LATTICE PARAMETERS  (ANGSTROMS  AND DEGREES) - PRIMITIVE CELL
       A           B          C          ALPHA      BETA      GAMMA        VOLUME
    2.97692    2.97692     2.97692     60.0000   60.0000    60.0000      18.65462
 
 COORDINATES OF THE EQUIVALENT ATOMS  (FRACTIONARY UNITS)
 
 N. ATOM EQUIV AT. N.           X                   Y                   Z
 
   1   1   1   12  MG    0.00000000000E+00  0.00000000000E+00   0.00000000000E+00
 
   2   2   1     8 O    -5.00000000000E-01 -5.00000000000E-01  -5.00000000000E-01
 
 NUMBER OF SYMMETRY OPERATORS          :   48
CRYSTAL output continues with the geometry editing section. In this case no geometry editing.  *******************************************************************************
 * GEOMETRY EDITING - INPUT COORDINATES ARE  GIVEN IN ANGSTROM          
 *******************************************************************************
 
  GEOMETRY NOW FULLY CONSISTENT WITH THE GROUP
Symmetry operators in the lattice vector basis
 ****  48 SYMMOPS - TRANSLATORS IN FRACTIONARY UNITS
  V INV                   ROTATION MATRICES                       TRANSLATOR
  1  1  1.00  0.00  0.00  0.00  1.00  0.00  0.00  0.00  1.00    0.00  0.00  0.00
  2  2  0.00  1.00 -1.00  1.00  0.00 -1.00  0.00  0.00 -1.00    0.00  0.00  0.00
  3  3 -1.00  0.00  0.00 -1.00  0.00  1.00 -1.00  1.00  0.00    0.00  0.00  0.00
  4  4  0.00 -1.00  1.00  0.00 -1.00  0.00  1.00 -1.00  0.00    0.00  0.00  0.00
  5  6  0.00  1.00  0.00  0.00  0.00  1.00  1.00  0.00  0.00    0.00  0.00  0.00
  6  5  0.00  0.00  1.00  1.00  0.00  0.00  0.00  1.00  0.00    0.00  0.00  0.00
  7  8  1.00  0.00 -1.00  0.00  0.00 -1.00  0.00  1.00 -1.00    0.00  0.00  0.00
  8  7  1.00 -1.00  0.00  0.00 -1.00  1.00  0.00 -1.00  0.00    0.00  0.00  0.00
  9 10 -1.00  0.00  1.00 -1.00  1.00  0.00 -1.00  0.00  0.00    0.00  0.00  0.00
 10  9  0.00  0.00 -1.00  0.00  1.00 -1.00  1.00  0.00 -1.00    0.00  0.00  0.00
 11 12  0.00 -1.00  0.00  1.00 -1.00  0.00  0.00 -1.00  1.00    0.00  0.00  0.00
 12 11 -1.00  1.00  0.00 -1.00  0.00  0.00 -1.00  0.00  1.00    0.00  0.00  0.00
 13 13  0.00 -1.00  0.00 -1.00  0.00  0.00  0.00  0.00 -1.00    0.00  0.00  0.00
 14 14 -1.00  0.00  1.00  0.00 -1.00  1.00  0.00  0.00  1.00    0.00  0.00  0.00
 15 16  0.00  1.00  0.00  0.00  1.00 -1.00 -1.00  1.00  0.00    0.00  0.00  0.00
 16 15  1.00  0.00 -1.00  1.00  0.00  0.00  1.00 -1.00  0.00    0.00  0.00  0.00
 17 17 -1.00  0.00  0.00  0.00  0.00 -1.00  0.00 -1.00  0.00    0.00  0.00  0.00
 18 18  0.00  0.00 -1.00  0.00 -1.00  0.00 -1.00  0.00  0.00    0.00  0.00  0.00
 19 21  0.00 -1.00  1.00  0.00  0.00  1.00 -1.00  0.00  1.00    0.00  0.00  0.00
 20 22  1.00 -1.00  0.00  1.00  0.00 -1.00  1.00  0.00  0.00    0.00  0.00  0.00
 21 19  0.00  1.00 -1.00 -1.00  1.00  0.00  0.00  1.00  0.00    0.00  0.00  0.00
 22 20  0.00  0.00  1.00 -1.00  0.00  1.00  0.00 -1.00  1.00    0.00  0.00  0.00
 23 23  1.00  0.00  0.00  1.00 -1.00  0.00  1.00  0.00 -1.00    0.00  0.00  0.00
 24 24 -1.00  1.00  0.00  0.00  1.00  0.00  0.00  1.00 -1.00    0.00  0.00  0.00
 25 25 -1.00  0.00  0.00  0.00 -1.00  0.00  0.00  0.00 -1.00    0.00  0.00  0.00
 26 26  0.00 -1.00  1.00 -1.00  0.00  1.00  0.00  0.00  1.00    0.00  0.00  0.00
 27 27  1.00  0.00  0.00  1.00  0.00 -1.00  1.00 -1.00  0.00    0.00  0.00  0.00
 28 28  0.00  1.00 -1.00  0.00  1.00  0.00 -1.00  1.00  0.00    0.00  0.00  0.00
 29 30  0.00 -1.00  0.00  0.00  0.00 -1.00 -1.00  0.00  0.00    0.00  0.00  0.00
 30 29  0.00  0.00 -1.00 -1.00  0.00  0.00  0.00 -1.00  0.00    0.00  0.00  0.00
 31 32 -1.00  0.00  1.00  0.00  0.00  1.00  0.00 -1.00  1.00    0.00  0.00  0.00
 32 31 -1.00  1.00  0.00  0.00  1.00 -1.00  0.00  1.00  0.00    0.00  0.00  0.00
 33 34  1.00  0.00 -1.00  1.00 -1.00  0.00  1.00  0.00  0.00    0.00  0.00  0.00
 34 33  0.00  0.00  1.00  0.00 -1.00  1.00 -1.00  0.00  1.00    0.00  0.00  0.00
 35 36  0.00  1.00  0.00 -1.00  1.00  0.00  0.00  1.00 -1.00    0.00  0.00  0.00
 36 35  1.00 -1.00  0.00  1.00  0.00  0.00  1.00  0.00 -1.00    0.00  0.00  0.00
 37 37  0.00  1.00  0.00  1.00  0.00  0.00  0.00  0.00  1.00    0.00  0.00  0.00
 38 38  1.00  0.00 -1.00  0.00  1.00 -1.00  0.00  0.00 -1.00    0.00  0.00  0.00
 39 40  0.00 -1.00  0.00  0.00 -1.00  1.00  1.00 -1.00  0.00    0.00  0.00  0.00
 40 39 -1.00  0.00  1.00 -1.00  0.00  0.00 -1.00  1.00  0.00    0.00  0.00  0.00
 41 41  1.00  0.00  0.00  0.00  0.00  1.00  0.00  1.00  0.00    0.00  0.00  0.00
 42 42  0.00  0.00  1.00  0.00  1.00  0.00  1.00  0.00  0.00    0.00  0.00  0.00
 43 45  0.00  1.00 -1.00  0.00  0.00 -1.00  1.00  0.00 -1.00    0.00  0.00  0.00
 44 46 -1.00  1.00  0.00 -1.00  0.00  1.00 -1.00  0.00  0.00    0.00  0.00  0.00
 45 43  0.00 -1.00  1.00  1.00 -1.00  0.00  0.00 -1.00  0.00    0.00  0.00  0.00
 46 44  0.00  0.00 -1.00  1.00  0.00 -1.00  0.00  1.00 -1.00    0.00  0.00  0.00
 47 47 -1.00  0.00  0.00 -1.00  1.00  0.00 -1.00  0.00  1.00    0.00  0.00  0.00
 48 48  1.00 -1.00  0.00  0.00 -1.00  0.00  0.00 -1.00  1.00    0.00  0.00  0.00

Size of direct lattice  GCALCO - MAX INDICES DIRECT LATTICE VECTOR   10  10  10
 NO.OF VECTORS CREATED 2999 STARS   59  RMAX (BOHR)    44.65152
The geometry used to compute the wave function is printed






T asymmetric unit
(F equivalent atom)
 GEOMETRY FOR WAVE FUNCTION - DIMENSIONALITY OF THE SYSTEM    3
 (NON PERIODIC DIRECTION: LATTICE PARAMETER FORMALLY SET TO 500)
 *******************************************************************************
 LATTICE PARAMETERS (ANGSTROMS AND DEGREES) - BOHR = 0.5291772083 ANGSTROM
 PRIMITIVE CELL - CENTRING CODE 5/0      (VOLUME=         18.65461525)
         A              B              C           ALPHA      BETA       GAMMA
     2.97691955     2.97691955     2.97691955    60.000000  60.000000  60.000000
 *******************************************************************************
 ATOMS IN THE ASYMMETRIC UNIT    2 - ATOMS IN THE UNIT CELL:    2
     ATOM              X/A                 Y/B                 Z/C
 *******************************************************************************
   1 T  12 MG    0.000000000000E+00  0.000000000000E+00  0.000000000000E+00
   2 T   8 O     5.000000000000E-01 -5.000000000000E-01 -5.000000000000E-01
Transformation matrix from primitive to crystallographic cell (by columns)

 Lattice parameters 
crystallographic cell

Coordinates of the
atoms in the  crystallographic cell
 TRANSFORMATION MATRIX PRIMITIVE-CRYSTALLOGRAPHIC CELL
 -1.0000  1.0000  1.0000  1.0000 -1.0000  1.0000  1.0000  1.0000 -1.0000

 *******************************************************************************
 CRYSTALLOGRAPHIC CELL (VOLUME=         74.61846100)
         A              B              C           ALPHA      BETA       GAMMA
     4.21000000     4.21000000     4.21000000    90.000000  90.000000  90.000000

 COORDINATES IN THE CRYSTALLOGRAPHIC CELL
     ATOM              X/A                 Y/B                 Z/C
 *******************************************************************************
   1 T  12 MG    0.000000000000E+00  0.000000000000E+00  0.000000000000E+00
   2 T   8 O    -5.000000000000E-01 -5.000000000000E-01 -5.000000000000E-01

 T = ATOM BELONGING TO THE ASYMMETRIC UNIT
Intracell Nuclear Repulsion (no physical meaning)

Primitive cell lattice vectors and atomic coordinates in the cartesian frame
 INTRACELL NUCLEAR REPULSION (A.U.)  1.3933481212094E+01

 CARTESIAN COORDINATES - PRIMITIVE CELL
 DIRECT LATTICE VECTORS CARTESIAN COMPONENTS (ANGSTROM)
          X                    Y                    Z
   0.000000000000E+00   0.210500000000E+01   0.210500000000E+01
   0.210500000000E+01   0.000000000000E+00   0.210500000000E+01
   0.210500000000E+01   0.210500000000E+01   0.000000000000E+00

 *******************************************************************************
 *      ATOM          X(ANGSTROM)         Y(ANGSTROM)         Z(ANGSTROM)
 *******************************************************************************
   1    12 MG    0.000000000000E+00  0.000000000000E+00  0.000000000000E+00
   2     8 O     2.105000000000E+00  2.105000000000E+00  2.105000000000E+00

Size of the system and computational parameters values
 *******************************************************************************
 N. OF ATOMS PER CELL        2  COULOMB OVERLAP TOL         (T1) 10** -6
 NUMBER OF SHELLS            5  COULOMB PENETRATION TOL     (T2) 10** -6
 NUMBER OF AO               14  EXCHANGE OVERLAP TOL        (T3) 10** -6
 N. OF ELECTRONS PER CELL   20  EXCHANGE PSEUDO OVP (F(G))  (T4) 10** -6
 CORE ELECTRONS PER CELL    12  EXCHANGE PSEUDO OVP (P(G))  (T5) 10**-12
 N. OF SYMMETRY OPERATORS   48  POLE ORDER IN MONO ZONE                4
 *******************************************************************************
Hamiltonian  TYPE OF CALCULATION :  RESTRICTED CLOSED SHELL
 HARTREE-FOCK HAMILTONIAN
 *******************************************************************************

SCF iteration procedure parameters (convergence criteria and shrinking factors); number and coordinates of the k-points used in the Pack-Monkhorst IBZ sampling (R real, C complex)
 NUMBER OF CYCLES              50  CONVERGENCE ON DELTAP        10**- 16
 NO MIXING OF F MATRICES           CONVERGENCE ON ENERGY        10**- 5
 SHRINK. FACT.(MONKH.)    8  8  8  NUMBER OF K POINTS IN THE IBZ     29
 SHRINKING FACTOR(GILAT NET)    8  NUMBER OF K POINTS(GILAT NET)     29
 *******************************************************************************
 *** K POINTS COORDINATES (OBLIQUE COORDINATES IN UNITS OF IS =  8)
   1-R(  0  0  0)   2-C(  1  0  0)   3-C(  2  0  0)   4-C(  3  0  0)
   5-R(  4  0  0)   6-C(  1  1  0)   7-C(  2  1  0)   8-C(  3  1  0)
   9-C(  4  1  0)  10-C(  5  1  0)  11-C(  6  1  0)  12-C(  7  1  0)
  13-C(  2  2  0)  14-C(  3  2  0)  15-C(  4  2  0)  16-C(  5  2  0)
  17-C(  6  2  0)  18-C(  3  3  0)  19-C(  4  3  0)  20-C(  5  3  0)
  21-R(  4  4  0)  22-C(  3  2  1)  23-C(  4  2  1)  24-C(  5  2  1)
  25-C(  4  3  1)  26-C(  5  3  1)  27-C(  6  3  1)  28-C(  5  4  1)
  29-C(  6  4  2)
 *******************************************************************************
Cartesian components (in a.u.) of direct and reciprocal lattice vectors
 DIRECT LATTICE VECTORS COMPON. (A.U.)     RECIP. LATTICE VECTORS COMPON. (A.U.)
        X            Y            Z              X            Y            Z
    0.0000000    3.9778735    3.9778735     -0.7897669    0.7897669    0.7897669
    3.9778735    0.0000000    3.9778735      0.7897669   -0.7897669    0.7897669
    3.9778735    3.9778735    0.0000000      0.7897669    0.7897669   -0.7897669

Dimensions of density and hamiltonian matrix in direct space - note the effect of symmetry (666 irreducible matrix elements  vs 13898 reducible)
 DISK SPACE FOR EIGENVECTORS (FTN 10)      10780 REALS

 SYMMETRY ADAPTION OF THE BLOCH FUNCTIONS ENABLED

 DIMENSIONS  P(G)=   13898 F(G)=    2820 P(G),F(G) (IRR)     666
 MAX G-VECTOR INDEX FOR 1- AND 2-ELECTRON INTEGRALS 319

 INFORMATION **** GENBUF **** COULOMB BIPO BUFFER LENGTH (WORDS) =     66150
 TTTTTTTTTTTTTTTTTTTTTTTTTTTTTT INPUT       TELAPSE        0.01 TCPU        0.02




Geometry analysis.
For all non equivalent atoms information on first n (6 default)
neighbors is printed:
number, type, distance, and position in terms of indices of the direct lattice cell.

Mg has 6-12-8-6-24-24 equivalent neighbors in the first 6 shells.

Oxygen has the same neighboring structure.

 

 

 

 

 

 

 

 

 

No internal degrees of freedom, the position of the atoms is fully defined by the symmetry.

 NEIGHBORS OF THE NON-EQUIVALENT ATOMS

 N = NUMBER OF NEIGHBORS AT DISTANCE R
    ATOM  N     R/ANG      R/AU   NEIGHBORS (ATOM LABELS AND CELL INDICES)
   1 MG   6     2.1050     3.9779   2 O   -1 0 0   2 O    0-1 0   2 O    0 0-1
                                    2 O   -1-1 0   2 O   -1 0-1   2 O    0-1-1
   1 MG  12     2.9769     5.6256   1 MG  -1 0 0   1 MG   1 0 0   1 MG  -1 0 1
                                    1 MG   1 0-1   1 MG  -1 1 0   1 MG   1-1 0
                                    1 MG   0-1 0   1 MG   0 1 0   1 MG   0-1 1
                                    1 MG   0 1-1   1 MG   0 0-1   1 MG   0 0 1
   1 MG   8     3.6460     6.8899   2 O    0 0 0   2 O   -1-1 1   2 O   -1 1-1
                                    2 O    1-1-1   2 O   -2 0 0   2 O    0-2 0
                                    2 O    0 0-2   2 O   -1-1-1
   1 MG   6     4.2100     7.9557   1 MG  -1-1 1   1 MG   1 1-1   1 MG  -1 1-1
                                    1 MG   1-1 1   1 MG  -1 1 1   1 MG   1-1-1
   1 MG  24     4.7069     8.8948   2 O    1 0-1   2 O   -1 0 1   2 O    1-1 0
                                    2 O   -1 1 0   2 O    0 1-1   2 O    0-1 1
                                    2 O   -2 0 1   2 O   -2 1 0   2 O    1 0-2
                                    2 O    1-2 0   2 O    0-2 1   2 O    0 1-2
                                    2 O   -2-1 1   2 O   -2 1-1   2 O   -1-2 1
                                    2 O   -1 1-2   2 O    1-1-2   2 O    1-2-1
                                    2 O   -2-1 0   2 O   -2 0-1   2 O   -1-2 0
                                    2 O   -1 0-2   2 O    0-2-1   2 O    0-1-2
   1 MG  24     5.1562     9.7438   1 MG  -2 0 1   1 MG   2 0-1   1 MG  -2 1 0
                                    1 MG   2-1 0   1 MG  -2 1 1   1 MG   2-1-1
                                    1 MG  -1-1 0   1 MG   1 1 0   1 MG  -1-1 2
                                    1 MG   1 1-2   1 MG  -1 0-1   1 MG   1 0 1
                                    1 MG  -1 0 2   1 MG   1 0-2   1 MG  -1 2-1
                                    1 MG   1-2 1   1 MG  -1 2 0   1 MG   1-2 0
                                    1 MG   0-2 1   1 MG   0 2-1   1 MG   0-1-1
                                    1 MG   0 1 1   1 MG   0-1 2   1 MG   0 1-2

   2 O    6     2.1050     3.9779   1 MG   1 0 0   1 MG   0 1 0   1 MG   0 0 1
                                    1 MG   1 1 0   1 MG   1 0 1   1 MG   0 1 1
   2 O   12     2.9769     5.6256   2 O   -1 0 0   2 O    1 0 0   2 O   -1 0 1
                                    2 O    1 0-1   2 O   -1 1 0   2 O    1-1 0
                                    2 O    0-1 0   2 O    0 1 0   2 O    0-1 1
                                    2 O    0 1-1   2 O    0 0-1   2 O    0 0 1
   2 O    8     3.6460     6.8899   1 MG   0 0 0   1 MG   1 1-1   1 MG   1-1 1
                                    1 MG  -1 1 1   1 MG   2 0 0   1 MG   0 2 0
                                    1 MG   0 0 2   1 MG   1 1 1
   2 O    6     4.2100     7.9557   2 O   -1-1 1   2 O    1 1-1   2 O   -1 1-1
                                    2 O    1-1 1   2 O   -1 1 1   2 O    1-1-1
   2 O   24     4.7069     8.8948   1 MG  -1 0 1   1 MG   1 0-1   1 MG  -1 1 0
                                    1 MG   1-1 0   1 MG   0-1 1   1 MG   0 1-1
                                    1 MG   2 0-1   1 MG   2-1 0   1 MG  -1 0 2
                                    1 MG  -1 2 0   1 MG   0 2-1   1 MG   0-1 2
                                    1 MG   2 1-1   1 MG   2-1 1   1 MG   1 2-1
                                    1 MG   1-1 2   1 MG  -1 1 2   1 MG  -1 2 1
                                    1 MG   2 1 0   1 MG   2 0 1   1 MG   1 2 0
                                    1 MG   1 0 2   1 MG   0 2 1   1 MG   0 1 2
   2 O   24     5.1562     9.7438   2 O   -2 0 1   2 O    2 0-1   2 O   -2 1 0
                                    2 O    2-1 0   2 O   -2 1 1   2 O    2-1-1
                                    2 O   -1-1 0   2 O    1 1 0   2 O   -1-1 2
                                    2 O    1 1-2   2 O   -1 0-1   2 O    1 0 1
                                    2 O   -1 0 2   2 O    1 0-2   2 O   -1 2-1
                                    2 O    1-2 1   2 O   -1 2 0   2 O    1-2 0
                                    2 O    0-2 1   2 O    0 2-1   2 O    0-1-1
                                    2 O    0 1 1   2 O    0-1 2   2 O    0 1-2

 THERE ARE NO SYMMETRY ALLOWED DIRECTIONS  
 TTTTTTTTTTTTTTTTTTTTTTTTTTTTTT SYMM        TELAPSE        0.01 TCPU        0.02
Integrals calculation.
Two-electron integrals
computation time = 
SHLC - MONIRR;
One-electron integrals computation time = 
MONMAD - SHLC
 INFORMATION **** EXCBUF **** EXCH. BIPO BUFFER: WORDS USED =     97362  
 TTTTTTTTTTTTTTTTTTTTTTTTTTTTTT MONIRR      TELAPSE        0.06 TCPU        0.06

  GAUSS70 FOR COULOMB   GAUSS70 FOR EXCHANGE
 **SHELL_ORTHODOX** SPACE FOR BIEL. INTEGRALS     1 BUFFERS
 TTTTTTTTTTTTTTTTTTTTTTTTTTTTTT SHLC        TELAPSE        1.97 TCPU        1.91
 TTTTTTTTTTTTTTTTTTTTTTTTTTTTTT MONMAD      TELAPSE        2.05 TCPU        2.00
 EEEEEEEEEE INT_CALC TERMINATION  DATE 02 09 2003 TIME 15:51:49.6
SCF iteration to compute the total energy starts.  *******************************************************************************
 MGO BULK
 CRYSTAL - SCF - TYPE OF CALCULATION :   RESTRICTED CLOSED SHELL
 *******************************************************************************
 TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT SDIK      CPU       7.880

Default initial guess for the wave function evaluation as superposition of atomic densities
 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
         ATOMIC WAVE FUNCTIONS
 
  ZNUC SCFIT  TOTAL HF ENERGY    KINETIC ENERGY   VIRIAL THEOREM ACCURACY
  12.0   5   -1.965119311E+02   1.917472779E+02 -2.024848609E+00  1.1E-06
   8.0   1   -7.231180559E+01   7.850242955E+01 -1.921140989E+00  0.0E+00
 
 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
Information on the SCF iteration.

At each
SCF cycle, total charge of the atoms (Mulliken scheme), total energy and values of the convergence criteria are printed;

DETOT
difference in total energy at cycle i and i-1;

DP
rms  on density matrix;

PX
maximum difference between density matrix elements

It also indicates whether the system is an
insulator or a conductor and the related Fermi level.

FDIK-TOTENY time for Fourier transform and diagonalization 

TOTENY-PDIG time for the reconstruction of Hamiltonian matrix in direct space

PDIG-FDIK time for calculation of Fermi energy
 CHARGE NORMALIZATION FACTOR   1.00000000; TOTAL ATOMIC CHARGES:
  12.0000000   8.0000000
 TTTTTTTTTTTTTTTTTTTTTTTTTTTTTT QGAM        TELAPSE        2.06 TCPU        2.01
 TTTTTTTTTTTTTTTTTTTTTTTTTTTTTT BIEL        TELAPSE        2.07 TCPU        2.01
 TTTTTTTTTTTTTTTTTTTTTTTTTTTTTT TOTENY      TELAPSE        2.07 TCPU        2.01
 CYC   0 ETOT(AU) -2.706738561044E+02 DETOT -2.71E+02 DP  1.00E+00 PX  0.00E+00
 TTTTTTTTTTTTTTTTTTTTTTTTTTTTTT FDIK        TELAPSE        2.07 TCPU        2.02
 INSULATING STATE - TOP OF VALENCE BANDS (A.U.) -2.082E-01
 TTTTTTTTTTTTTTTTTTTTTTTTTTTTTT PDIG        TELAPSE        2.08 TCPU        2.02
 CHARGE NORMALIZATION FACTOR   1.00000000; TOTAL ATOMIC CHARGES:
  10.9720201   9.0279799
 TTTTTTTTTTTTTTTTTTTTTTTTTTTTTT QGAM        TELAPSE        2.08 TCPU        2.02
 TTTTTTTTTTTTTTTTTTTTTTTTTTTTTT BIEL        TELAPSE        2.09 TCPU        2.03
 TTTTTTTTTTTTTTTTTTTTTTTTTTTTTT TOTENY      TELAPSE        2.09 TCPU        2.03
 CYC   1 ETOT(AU) -2.711666415674E+02 DETOT -4.93E-01 DP  1.00E+00 PX  0.00E+00
 TTTTTTTTTTTTTTTTTTTTTTTTTTTTTT FDIK        TELAPSE        2.09 TCPU        2.04
 INSULATING STATE - TOP OF VALENCE BANDS (A.U.) -6.167E-02
 TTTTTTTTTTTTTTTTTTTTTTTTTTTTTT PDIG        TELAPSE        2.09 TCPU        2.04
 CHARGE NORMALIZATION FACTOR   1.00000000; TOTAL ATOMIC CHARGES:
  11.3203964   8.6796036
 TTTTTTTTTTTTTTTTTTTTTTTTTTTTTT QGAM        TELAPSE        2.09 TCPU        2.04
 TTTTTTTTTTTTTTTTTTTTTTTTTTTTTT BIEL        TELAPSE        2.10 TCPU        2.05
 TTTTTTTTTTTTTTTTTTTTTTTTTTTTTT TOTENY      TELAPSE        2.10 TCPU        2.05
 CYC   2 ETOT(AU) -2.712141249457E+02 DETOT -4.75E-02 DP  1.35E-02 PX  1.35E-01
 TTTTTTTTTTTTTTTTTTTTTTTTTTTTTT FDIK        TELAPSE        2.10 TCPU        2.05
 INSULATING STATE - TOP OF VALENCE BANDS (A.U.) -1.755E-01
 TTTTTTTTTTTTTTTTTTTTTTTTTTTTTT PDIG        TELAPSE        2.11 TCPU        2.05
 CHARGE NORMALIZATION FACTOR   1.00000000; TOTAL ATOMIC CHARGES:
  11.1948077   8.8051923
 TTTTTTTTTTTTTTTTTTTTTTTTTTTTTT QGAM        TELAPSE        2.11 TCPU        2.05
 TTTTTTTTTTTTTTTTTTTTTTTTTTTTTT BIEL        TELAPSE        2.11 TCPU        2.06
 TTTTTTTTTTTTTTTTTTTTTTTTTTTTTT TOTENY      TELAPSE        2.11 TCPU        2.06
 CYC   3 ETOT(AU) -2.712177270194E+02 DETOT -3.60E-03 DP  5.04E-03 PX  7.64E-02
 TTTTTTTTTTTTTTTTTTTTTTTTTTTTTT FDIK        TELAPSE        2.12 TCPU        2.06
 INSULATING STATE - TOP OF VALENCE BANDS (A.U.) -1.386E-01
 TTTTTTTTTTTTTTTTTTTTTTTTTTTTTT PDIG        TELAPSE        2.12 TCPU        2.07
 CHARGE NORMALIZATION FACTOR   1.00000000; TOTAL ATOMIC CHARGES:
  11.2327211   8.7672789
 TTTTTTTTTTTTTTTTTTTTTTTTTTTTTT QGAM        TELAPSE        2.12 TCPU        2.07
 TTTTTTTTTTTTTTTTTTTTTTTTTTTTTT BIEL        TELAPSE        2.13 TCPU        2.07
 TTTTTTTTTTTTTTTTTTTTTTTTTTTTTT TOTENY      TELAPSE        2.13 TCPU        2.07
 CYC   4 ETOT(AU) -2.712180611061E+02 DETOT -3.34E-04 DP  1.37E-03 PX  1.36E-02
 TTTTTTTTTTTTTTTTTTTTTTTTTTTTTT FDIK        TELAPSE        2.13 TCPU        2.08
 INSULATING STATE - TOP OF VALENCE BANDS (A.U.) -1.504E-01
 TTTTTTTTTTTTTTTTTTTTTTTTTTTTTT PDIG        TELAPSE        2.14 TCPU        2.08
 CHARGE NORMALIZATION FACTOR   1.00000000; TOTAL ATOMIC CHARGES:
  11.2195509   8.7804491
 TTTTTTTTTTTTTTTTTTTTTTTTTTTTTT QGAM        TELAPSE        2.14 TCPU        2.08
 TTTTTTTTTTTTTTTTTTTTTTTTTTTTTT BIEL        TELAPSE        2.14 TCPU        2.09
 TTTTTTTTTTTTTTTTTTTTTTTTTTTTTT TOTENY      TELAPSE        2.14 TCPU        2.09
 CYC   5 ETOT(AU) -2.712180950048E+02 DETOT -3.39E-05 DP  4.94E-04 PX  6.23E-03
 TTTTTTTTTTTTTTTTTTTTTTTTTTTTTT FDIK        TELAPSE        2.15 TCPU        2.09
 INSULATING STATE - TOP OF VALENCE BANDS (A.U.) -1.465E-01
 TTTTTTTTTTTTTTTTTTTTTTTTTTTTTT PDIG        TELAPSE        2.15 TCPU        2.10
 CHARGE NORMALIZATION FACTOR   1.00000000; TOTAL ATOMIC CHARGES:
  11.2237300   8.7762700
 TTTTTTTTTTTTTTTTTTTTTTTTTTTTTT QGAM        TELAPSE        2.15 TCPU        2.10
 TTTTTTTTTTTTTTTTTTTTTTTTTTTTTT BIEL        TELAPSE        2.16 TCPU        2.10
 TTTTTTTTTTTTTTTTTTTTTTTTTTTTTT TOTENY      TELAPSE        2.16 TCPU        2.10
 CYC   6 ETOT(AU) -2.712180983825E+02 DETOT -3.38E-06 DP  1.49E-04 PX  1.48E-03
 TTTTTTTTTTTTTTTTTTTTTTTTTTTTTT FDIK        TELAPSE        2.16 TCPU        2.11
 INSULATING STATE - TOP OF VALENCE BANDS (A.U.) -1.478E-01
 TTTTTTTTTTTTTTTTTTTTTTTTTTTTTT PDIG        TELAPSE        2.17 TCPU        2.11
At the end of SCF iterations each contribution to the total energy is displayed as well as the total energy and the virial coefficient
 CHARGE NORMALIZATION FACTOR   1.00000000; TOTAL ATOMIC CHARGES:
  11.2223209   8.7776791
 TTTTTTTTTTTTTTTTTTTTTTTTTTTTTT QGAM        TELAPSE        2.17 TCPU        2.11
 TTTTTTTTTTTTTTTTTTTTTTTTTTTTTT BIEL        TELAPSE        2.17 TCPU        2.12
 +++ ENERGIES IN A.U. +++
 ::: EXT EL-POLE : L =  0                         -4.6907630069433E+02
 ::: EXT EL-POLE : L =  1                         -1.1466965027180E-21
 ::: EXT EL-POLE : L =  2                         -1.2944147700301E-19
 ::: EXT EL-POLE : L =  3                         -2.8401639980708E-22
 ::: EXT EL-POLE : L =  4                         -1.0955281290192E-04
 ::: EXT EL-SPHEROPOLE                             3.9641495581541E+00
 ::: BIELET ZONE E-E                               5.1160526532334E+02
 ::: TOTAL E-E                                     4.6493004634353E+01
 ::: TOTAL E-N + N-E                              -5.1175597833315E+02
 ::: TOTAL N-N                                    -7.3084276676762E+01
 ::: KINETIC ENERGY                                2.6712915158680E+02
 ::: TOTAL   ENERGY                               -2.7121809878875E+02
 ::: VIRIAL COEFFICIENT                            9.9240462879843E-01
 TTTTTTTTTTTTTTTTTTTTTTTTTTTTTT TOTENY      TELAPSE        2.17 TCPU        2.12
 CYC   7 ETOT(AU) -2.712180987888E+02 DETOT -4.06E-07 DP  1.49E-04 PX  1.48E-03
Criteria satisfied to stop SCF iteration
Final total
energy, Hamiltonian (HF), unit of measure (hartree), number of cycles (7).
 === SCF ENDED -CONVERGENCE ON ENERGY      E(AU) -2.7121809878875E+02 CYCLES   7


 TOTAL ENERGY(HF)(AU)(   7) -2.7121809878875E+02 DE-4.1E-07 DP 1.5E-04 PX 1.5E-03
 EIGENVECTORS IN FORTRAN UNIT 10
Total CPU and elapsed time
Date
 TTTTTTTTTTTTTTTTTTTTTTTTTTTTTT END         TELAPSE        2.19 TCPU        2.13

 EEEEEEEEEE TERMINATION  DATE 02 09 2003 TIME 15:51:49.7

Complete input decks are available as example. All of these can run with the demo CRYSTAL03 version. Minimal basis set inputs run in few seconds. 

 

Minimal basis set Extended basis set

Beryllium bulk

Beryllium bulk

MgO bulk

MgO bulk

NiO bulk

NiO bulk

Si bulk

Si bulk

Diamond

Diamond

Graphite monolayer

Graphite monolayer

(SN)   polymer

(SN)   polymer


 

http://tutorials.crystalsolutions.eu/tutorials/others/quick.html.save